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A B S T R A C T   

Conventional alloying and conversion Li-host anode materials have been extensively studied as high capacity 
lithium ion battery anodes. However, they suffer continuous volume change during each charge-discharge 
process, triggering the electrode pulverization and loss of their capacity upon cycling. Interestingly, in
vestigations on glass materials as Li-host anodes are less prevalent, although their disorder structure can help to 
accommodate their volumetric expansion and maintain the anisotropic particle arrangement with a better dis
tribution during Li-ion insertion and extraction. Here, we report attributes of a promising candidate chalcogenide 
glass material, Ge2Sb2Se5, which exhibits a reversible high capacity of 626 mAh g� 1 at a 0.5 C-rate, displays a 
capacity retention of 80% with a coulombic efficiency of >99% after 100 cycles. The resulting material per
formance is explained by a proposed lithiation mechanism in which lithium ions are alloyed with Se atoms at 
high potential, followed by the lithiation of Sb and Ge as the potential decreases during the discharge process. 
DFT calculation suggests an optimized glassy cell unit of Ge2Sb2Se5 with an energy gap of 0.14 eV, proposing a 
possible arrangement of atoms with short range order, in which the large variation of the nearest neighbor 
distances in Ge2Sb2Se5 can promote its stable anodic performance.   

1. Introduction 

Since its introduction in the secondary battery market (SONY ©, 
1991), Li-ion batteries (LIBs) have achieved great success in a wide 
variety of domestic, medical, security and portable applications [1–3], 
due to their high power and energy density, stable performance during 
hundreds of charge-discharge cycles, and reasonable cost [4–7]. How
ever, the constant increase of demand for LIBs with high Li-ion storage, 
stable performance and long-life cycling motivates the quest towards 
developing and improving high capacity Li-host anode materials [8–11]. 
Commonly employed graphitized carbon has been extensively used as a 
commercial anode, offering a moderate theoretical specific capacity of 
372 mAh g� 1 (with an experimental capacity ~330 mAh g� 1 at mod
erate C-rate of C/5) through the electrochemical redox reactions: Li þ 6C 
↔ LiC6. This capacity has been shown to be insufficient to fulfill the 
energy needs of our dynamic modern society [8,12]. 

Promising Li-host anode materials with high performance have been 
developed using several strategies, such as, particle size reduction 
[13–15], increasing the electrode conductivity [16–20], and design new 
architectures [21–24] or active phases [25–29], in which their 
physico-chemical properties can promote some interesting synergistic 
effects that could lead to an improvement in their electrochemical 
properties. 

Chalcogenide materials have attracted considerable attention as Li- 
host anode materials [30–32], since they can reach high levels of 
Li-ion storage through conversion and alloying [33–36] electrochemical 
reactions. Glassy materials possess unique and favorable 
physical-chemical, mechanical and textural properties that allow them 
to suppress huge volumetric changes during the charge-discharge pro
cesses, avoiding the electrode pulverization, maintaining a good con
nectivity and electron mobility through the negative electrode [37,38]. 
Therefore, chalcogenide glass materials have exhibited high Li-ion 
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mobility in LIB systems [39–42] with better or special physical-chemical 
properties (i.e., ionic conductivity, electrochemical and mechanical 
stability) in comparison to their single or poly-crystalline counterparts 
[34,43–46]. These characteristics made chalcogenide glasses as inter
esting materials with certain potential as Li-ion host anode for LIB or 
beyond Li-ion applications. 

Here, we report electrochemical performance of a promising amor
phous Li-host Ge2Sb2Se5 (GSSe) anode material prepared by using the 
conventional melt-quenching (M-Q) technique (Scheme 1). Electro
chemical results demonstrated that multi-component Ge, Sb and Se- 
containing material exhibits a high theoretical specific capacity of 
~848 mAh g� 1 (around 2 times higher than graphite), and exceeds that 
shown in other systems based on ~22 at.% of Ge (1600 mAh g� 1) [47], 
~22 at.% of Sb (660 mAh g� 1) [48] and ~56 at.% of Se (678 mAh g� 1) 
[49]. It was found that the combination of high capacity Li-host mate
rials in a previously unexplored amorphous network structure offers 
promising electrochemical performance. 

2. Result and discussion 

Fig. 1a shows a DSC thermogram with an endotherm dip at 265 �C 
with a glass transition temperature (Tg) of 245 �C. The as-quenched 
material illustrates evidence of quenched-in nuclei as illustrated in the 
onset of an exothermic crystallization peak (Tx) near 300 �C. The tem
perature interval ΔT between Tg and the onset crystallization tempera
ture (Tx) is considered as an indicator of glass stability, where ΔT ¼ Tx �

Tg. While the exotherm in Fig. 1a suggests possible crystallization, no 
peaks are observed in Fig. 1b which depicts the XRD pattern for 
powdered GSSe material, portraying two broad diffraction humps 
featuring amorphous phase. The lack of distinct diffraction peaks in the 
XRD patterns confirm the as-melted material is amorphous. Also, the 
glassy GSSe material with a short order arrangement was modelled 
following Sun et al. [53] procedure. The disordered GSSe supercell 
contains Ge and Sb vacancies randomly generated, and the relaxed GSSe 
glass model is composed of 324 atoms (see Fig. 1c and S1). After full 
optimization of the disordered GSSe atomic network, it is clear the 
obtention of a glass behavior since the nearest neighbor distances have 
large variations for almost all atoms. The main Ge–Sb, Ge–Ge, Ge–Se, 
Se–Sb, Se–Se and Sb–Sb bond lengths are depicted in Table S1. The 
density of states of the glassy GSSe is shown in Fig. S2, it presents a 
semiconductor behavior with an energy gap of 0.14 eV. While its 
valence band maximum (VBM) is mostly dominated by Se-p states, the 
conduction band minimum (CBM) is contributed by the hybridization of 
Ge-p, Sb-p and Se-p states. 

A topographic image of GSSe particles acquired by SEM reveals the 
presence of agglomerated particles with nanometric size and random 
shape (see Fig. 1d). Additional topographic images (see Fig. S3) depict a 
mixture of pristine GSSe sample and carbon materials. LR-TEM micro
graph (Fig. 1e) clearly shows a single GSSe nanoparticle of a thin laminal 
shape. HR-TEM micrograph (Fig. 1f) demonstrates no obvious crystal
lographic lattice fringes, indicating the amorphous nature of GSSe par
ticles. The selected area electron diffraction (SAED, Fig. 1g) pattern 
confirms the characteristic anisotropic atomic arrangement of GSSe 
particles. Interestingly, Fig. S4 also reveals the existence of both amor
phous and polycrystalline GSSe particles, suggesting the formation of 

some small size crystallites during synthesis process. Furthermore, the 
EDX mapping data in Fig. 1h-k confirms the presence of Ge (red), Sb 
(blue), and Se (green), similar to EDS information obtained using SEM in 
Fig. S3, in the GSSe nanoparticle. 

Fig. 2a shows the cyclic voltammetry (CV) information obtained 
from glassy GSSe electrode as Li-host anode, which was acquired at 
0.2 mV s� 1 between 0.01 and 3.0 V vs Li/Liþ. During the first cathodic 
scan, the irreversible broad peaks at about 1.66, 1.21, 0.52 and 0.01 V vs 
Li/Liþ were induced by the solid electrolyte interphase (SEI) layer for
mation, conversion and alloying reactions that occur between GSSe glass 
chalcogenide and Li. The well-overlapped cathodic peaks on the sub
sequent CV curves are associated with the lithiation reaction: (1) at high 
potential, 1.66 V vs Li/Liþ, Se þ 2Li → Li2Se [54]; (2) at 1.21 V vs Li/Liþ, 
GeSe2 þ 2Li → Ge þ GeSe þ Li2Se [55] or Sb2Se3 þ 6Li → 2Sb þ 3Li2Se 
[35]; (3) at 0.52 V vs Li/Liþ, Sb þ 3Li → Li3Sb [56] or GeSe þ 2Li → 
Ge þ Li2Se [55]; (4) at low potential, 0.01 V vs Li/Liþ, Ge þ 4.4Li → 
Li4.4Ge [47,55,57], revealing a stable electrochemistry. During the 
positive scans appeared some anodic peaks associated to the delithiation 
reaction: (1) at 0.56 V vs Li/Liþ, Li4.4Ge → Ge þ 4.4Li; (2) at 1.09 V vs 
Li/Liþ, Li3Sb → Sb þ 3Li; (3) at 1.64 V vs Li/Liþ, Li2Se þ Sb → LixSb2Se3 
[35]; at 2.2 V vs Li/Liþ, LixSb2Se3 → Sb2Se3 þ xLi [35]. 

The cyclability and rate capability of GSSe glass chalcogenide par
ticles were studied by galvanostatic charge-discharge measurements, 
where capacities were calculated based on the mass of GSSe. Fig. 2b 
shows the charge-discharge profiles of the GSSe anode for cycle 1st, 2nd 
and 100th acquired at a C-rate of 0.5C, between an electrochemical 
window from 0.01 to 3.0 V vs Li/Liþ. The GSSe anode delivered an initial 
specific discharge capacity of around 1611 mAh g� 1 at 0.05 C-rate. This 
value of capacity is higher than GSSe’s theoretical specific capacity (848 
mAh g� 1) because the SEI layer is formed during the 1st discharge cycle 
of the anodic electrode in the half cell configuration, which is clearly 
observed in Fig. S5. The cross-section SEM images depict that the cycled 
GSSe electrode suffers an expansion of 26% (from 19 to 24 μm), indi
cating that the amorphous arrangement of the glassy GSSe chalcogenide 
partially suppresses the volume expansion of Ge, Sb and Se upon cycling. 
However, the active glass material gives a high specific discharge ca
pacity of about 626 mAh g� 1 at 0.5 C-rate with a capacity retention of 
80% after the second cycle and a coulombic efficiency of 99.2% after 
100 cycles. Fig. 2c displays the cycle performance of GSSe anode, which 
shows a stable behavior with a continuous decay of capacity during few 
cycles, reaching a reversible discharge capacity of 626 mAh g� 1 after 
100 cycles, that continuous loss of capacity could be associated with the 
disconnection of the active particles from the electrode as a result of the 
electrode pulverization [58], which can generate mechanical stress, 
cracks and fractures inside the anodic electrode. Dependence of dQ dV� 1 

vs potential (see Fig. 2d) reveals that for the cycle 5th, 50th and 100th, 
Se is getting inactive as the reaction proceeds. At the same time, more Ge 
participates during the electrochemical redox reaction of lithium, which 
leads to a stable performance without a significant capacity decay after 
50 cycles. During this process the Se inactivation could be related to its 
partial dissociation inside the electrolyte by the formation of soluble 
polyselenides species [35], as Fig. S6 displays the presence of Se on the 
PP separator and Li counter electrode, confirmed by EDS analysis. 
Meanwhile, the increment of Ge activation could result from the elec
trode pulverization, allowing the participation of Ge in the core of GSSe 

Scheme 1. Preparation of glassy GSSe powder from crystalline sources via melt-quenching.  
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microparticles. Fig. S7 demonstrates the presence of rich- and poor-Se 
regions on the electrochemically active material after cycling, which 
keeps its anisotropic arrangement, but its morphology and elemental 
composition changed upon cycling (TEM and EDS studies in Figs. S7 and 
S8). Fig. 2e presents Nyquist plot of cycled glassy electrode, in which the 
cycled one contains two overlapped semicircles at high and low fre
quencies, related to the electrode/electrolyte interface layer (6 Ω) and 
the charge transfer (14 Ω) resistances, respectively, indicating the for
mation of a stable SEI layer on the glassy GSSe anode. Also, a linear tail 
indicates an existence of semi-infinite linear Li-ion diffusion or Warburg 
impedance [3], with a Li-ion diffusion coefficient value of 
~1.2 � 10� 14 cm2 s� 1 for the amorphous GSSe chalcogenide. 

The rate capability of the glassy GSSe chalcogenide anode was 
studied at different C-rate values during 10 D-C cycles, see Fig. 2f. The 
glass material exhibits an average of specific discharge capacities of 925, 
849, 755, 638, 554 mAh g� 1, and back to 798 mAh g� 1 at C-rate of 0.05, 
0.1, 0.2, 0.5, 1 C, and back to 0.1C, respectively. The glassy GSSe anode 
displays a high C-rate capability, delivering 554 mAh g� 1 capacity at 
1 C-rate, which is about two times higher than traditional graphitic 
anodes (~300 mAh g� 1 at 0.2C). Glassy GSSe anode exhibited high 
reversible capacity, good rate capability with stable behavior, such 
performance could be related to a synergistic effect between Ge and Sb 
selenides during the conversion and alloying redox reactions. As shown 
in Fig. S9, the electrode of Sb gives a long cycle stability but lower ca
pacity than the Ge electrode during the initial 50 D-C cycles. 

Additionally, the electrochemical behavior of the GSSe electrode was 
evaluated between 0.01 and 1.5 V vs Li/Liþ (Fig. S11). Under this con
dition, the active material delivers a high specific capacity of 503 mAh 
g� 1 at 0.5 C-rate after 100 cycles that is less than the delivered capacity 
of 626 mAh g� 1 at 0.5 C-rate (between 0.01 and 3.0 V vs Li/Liþ). This is 
due to the suppression of selenium redox reactions after the formation of 
Li2Se, which leads to increase in the solid-electrolyte interface and 
charge transfer resistance by 3 times each one. However, the Ge and Sb 
reactions deliver a stable redox performance as the physical-chemical 
and textural properties of glassy Ge2Sb2Se5 allows a good connectivity 
between the electroactive particles, carbon additive and binder, pro
ducing a promising anodic electrode for next generation Li-ion batteries. 

3. Conclusion 

In summary, this is the first report, where glassy Ge2Sb2Se5 particles 
are used as Li-host anode material, delivering a promising reversible 
high specific discharge capacity of 626 mAh g� 1 at a C-rate of 0.5C with 
99.2% coulombic efficiency after 100 cycles and with high rate capa
bilities, in which the glass chalcogenide electrode reaches 554 mAh g� 1 

capacity at 1 C-rate. This novel, electrochemically active GSSe glass 
chalcogenide anode material enables a new approach to design high- 
capacity and stable Li-host anode materials for the next generation of 
rechargeable batteries. 

Fig. 1. Characterization of amorphous GSSe powder: (a) DSC spectrum of as-melted GSSe glass chalcogenide; (b) X-ray diffraction pattern of GSSe glass powder; (c) 
3D unit cell of glassy GSSe depicting simulated atomic arrangement, Se (green), Ge (blue) and Sb (red); (d) SEM image of agglomerated microparticles; (e) low- and 
(f) high-resolution TEM micrographs of an individual GSSe nanoparticle; (g) selected-area electron diffraction pattern; (h)–(k) EDS analysis of a GSSe nanoparticle, 
Ge (red), Sb (blue), and Se (green). 
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4. Experimental section 

4.1. Material preparation 

Ge2Sb2Se5 (GSSe) chalcogenide glass was prepared by a conventional 
melt-quenching technique, using high purity (metals basis, 5 N) raw 
materials (Ge, Sb, Se) in the exact stoichiometry. The weighed batch was 
loaded into cleaned fused quartz tube and sealed under vacuum using a 
methane–oxygen torch to form a sealed ampoule. The tube was placed 
into a rocking furnace at 850 �C, to homogenize the melt. After over
night rocking at elevated temperature, the furnace was then cooled to 
the quench temperature, TQ ¼ 750 �C, and quenched using compressed 
air flow over the ampoule. The batch was then annealed for 
2 h (T ¼ 230 �C) in order to remove residual stress, cooled down slowly 
to room temperature, and removed from the ampoule for subsequent 
characterization. 

4.2. Characterizations 

Characteristic temperatures of glass transition (Tg) and crystalliza
tion (Tx) were determined by differential scanning calorimetry (Netzsch 
DSC 204 F1 Phoenix). During this procedure small powder samples 
about 20 mg were loaded into sealed aluminum pans. Then, the samples 
were heated at a rate of 10 �C min� 1 from 25 �C to 400 �C. To confirm 
the amorphous nature of the prepared materials, GSSe particles were 
analyzed using powder X-ray diffraction (XRD) technique in a Rigaku 
diffractometer with Bragg-Brentano. Subsequently, the topographic in
formation of the GSSe material was examined by using scanning electron 
microscopy (JEOL NeoScope JCM6000). A microstructural analysis was 
performed with transmission electron microscopy (FEI Talos) at 200 kV 
in bright and dark field modes. Additionally, the chemical composition 
was identified using energy dispersive X-ray (EDX) spectroscopy. 

4.3. DFT calculation 

Ab-initio total energy calculations to simulate the glassy Ge2Sb2Se5 

structure were carried out using Vienna ab-initio simulation package 
(VASP) [50]. In order to treat the exchange and correlation effects, we 
have used the generalized gradient approximation as stated by the 
Perdew-Burke-Ernzerhof parametrization [51]. Core electron states 
were represented by the projector augmented-wave method (PAW) 
[52]. For structural optimizations, the electronic states were expanded 
in a plane-wave basis set with cutoff energy of 408 eV. The electronic 
states were evaluated in a gamma centered and equally spaced k-points 
on a grid of 2 � 2 � 1. We evaluated the density of states and projected 
density of states by utilizing a denser k-points grid of 8 � 8 � 3. 

4.4. Electrochemical evaluation 

The electrochemical performance of GSSe particles as Li-host anode 
material was studied using cyclic voltammetry (CV) and charge- 
discharge cycling. First, GSSe powder was mixed with graphene, Super 
P carbon, and polyvinylidene fluoride (PVdF) in a mass ratio of 
70:10:10:10 in NMP solvent. The resultant slurry was casted on a Cu foil, 
followed by solvent evaporation in vacuum. The film was punched out to 
obtain a working electrode with a diameter of 12 mm and active mass of 
2.5 mg. The electrochemical analysis was carried out in 2032 coin-type 
cells, using Li foil as a counter electrode, Celgard™ 2500 discs as 
separator, and 1.0 M LiPF6 in ethylene carbonate (EC) and diethyl car
bonate (DEC) (1:1 volume ratio) as electrolyte. 

The Li-ion diffusion coefficient of the GSSe anode was calculated 
according to next equation: 

D¼
0:5R2T2

S2n4F4c2σ2 (i)  

Where, D is the diffusion coefficient (cm2 s� 1); R is the universal gas 
constant (8.314 J mol� 1K� 1); T is the absolute temperature (K); S is the 
surface area of the electrode (1.27 cm2); n is the charge transfer number; 
F is the Faraday’s constant (96486 C mol� 1); c is the lithium ion con
centration (0.047 mol cm� 3); and σ is Warburg factor that can be 
calculated from the slope of Z0 vs ω� 1/2 graph (Fig. S12). 

Fig. 2. Electrochemical properties of glassy GSSe anodes: (a) cyclic voltammetry at 0.2 mV s� 1; (b) charge-discharge profiles; (c) cycle performance at 0.5 C-rate; (d) 
dQ dV� 1 plot; (e) electrochemical impedance spectroscopy data after cycling with its corresponding circuit fitting; and (f) rate capability. C-rate was calculated based 
on 848 mAh g� 1 at 1 C. 
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